

Figure S5: Effects of exponential cutoffs on the Heaps' law. All the plots are generated by the stochastic model with $\alpha=1$ (i.e., $\beta=2$). Instead of a prefect power-law distribution, here the probability density function p(z) obeys the form $p(z) \sim z^{-2} \exp(-z/z_c)$. The three plots in the first line corresponds to the case without cutoff (i.e., $z_c \to \infty$). The following four lines correspond to $z_c=1000$, $z_c=100$, and $z_c=1$, respectively. Clearly, as the decreasing of z_c (i.e., the enhancing of cutoff effect), the Heaps' law still holds with an increasing exponent. The last line shows the result for purely exponential distribution $p(z) \sim \exp(-z/10)$. Although this distribution has heavier tail than the one with $z_c=1$, it does not obey the Heaps' law. Actually, it grows almost linearly in the blue area (the fitting slope of the blue area is 0.972) but soon bends.